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SI Text

This supporting text exposes the technical details of the global
inference approach to identify direct residue contacts in protein–
protein interactions from genomic libraries.

Data and Frequency Counts. As described in the main text, data are
extracted by scanning multispecies genomes with hidden Markov
models for the HisKA and RR classes of sensor kinases (SK) and
response regulators (RR). SK/RR pairs being adjacent on the
chromosome are selected, resulting in M � 2,546 pairs. Each pair
is concatenated into a single string of N � NHK � NRR � 88 �
124 � 212 letters from a Q � 21-letter alphabet. The alphabet
contains 1 letter for each amino acid, and a supplementary letter
for alignment gaps. In the following, the different nature of these
letters is not distinguished. As a result, data are provided in the
form of a N � M matrix D � (Ai

a) with i � 1, . . ., N enumerating
residue positions (sites) and a � 1, . . ., M protein pairs (samples).

Inference is not based directly on these sequences, but uses
statistical sequence properties as given by the single- and 2-site
occupancies. Frequency counts are introduced,

fi�Ai� �
1

�Q � M�� � �
a�1

M

��Ai, Ai
a�� [1]

fij�Ai, Aj� �
1

�Q � M��

Q
� �

a�1

M

��Ai, Ai
a���Aj, Aj

a��
for the occupancy of residue position i by amino acid type Ai and
for the joint occupancy of position pair (i, j) by (Ai, Aj). The
Kronecker symbol �(�,�) equals one if arguments are equal, and
zero else. The above formulae contain a pseudocount � � 0,
which can be considered as a prior needed to regularize fre-
quency counts for finite-sample effects. It prevents counts from
equaling zero, which in the inference task below would lead to
divergent couplings. The pseudocount �, which is set to 1 in our
implementation, becomes less and less relevant the larger the
dataset is, i.e., for M �� �Q. For the data used in this work, it
has a very weak effect on the ranking of residue position pairs
described below. Note that the pseudocount in Eqs. 1 is intro-
duced in a way to ensure consistency,

�
Aj�1

Q

fij�Ai, Aj� � fi�Ai� [2]

for all i, j � {1, . . ., N} and all Ai � {1, . . ., Q}.
The quantities fi and fij will be the actual inputs to both the

calculation of mutual information and to the global model
inference by message passing. The use of frequency counts
instead of complete amino acid sequences has an important
impact on the computational complexity of inference: Larger
datasets for additional genomes will give a better estimate of the
occupancies, but do not slow down the actual inference.

In principle one could also ask for statistical features beyond
residue pairs, i.e., frequency counts including 3 or more residues.
This is, however impossible with current data: A 3-residue
distribution describes 213 � 9,261 amino acid combinations, so
the number M of interacting protein pairs should be increased by
at least one order of magnitude compared with current data.

Mutual Information (MI). A simple local method to detect corre-
lation between residue positions is given by mutual information.
Raw MI is calculated as

MIij
�raw� � �

Ai, Aj�1

Q

fij�Ai, Aj� ln
f ij�Ai, Aj�

f i�Ai�f j�Aj�
. [3]

MI measures the Kullback–Leibler divergence of the joint distri-
bution fij(Ai, Aj) from its factorized counter part fi(Ai)fj(Aj), MI
equals zero if and only if fij is actually factorized, and it is positive else.

In our case, amino acid distributions are estimated from a
finite sample. This will lead, even for a priori factorized cases, to
a spurious nonzero contribution to the mutual information. This
contribution actually depends on the single-site distributions
(i.e., on the residue conservation in single sites), and is therefore
expected to be different for different position pairs. To correct
for this effect, the average MI of a null model is estimated and
subtracted from the raw MI,

MIij � MIij
�raw� � �Mij

�0� [4]

with the overbar denoting the average over 400 random real-
izations of the null model. The null model itself is very simple.
We introduce a random permutation � � SM of the M samples,
and estimate MI for pairs (Ai

a, Aj
�(a)). In the following we refer

to this sample-size-corrected MI simply as mutual information.

Maximum Entropy Model. High mutual information can result from
a strong direct coupling of sites i and j (which we would consider an
indicator for spatial vicinity of residues in the folded protein/
dimerized protein pair). It may also result from indirect coupling of
i and j via intermediate sites. In this case, one would not expect
residues to be necessarily close in 3-dimensional structure.

MI is a local measure; it encounters only 1 residue pair at a
time. MI is intrinsically unable to disentangle direct from
indirect coupling. Consequently, prediction of spatial vicinity of
interacting residues by MI is restricted. Therefore a global
approach is proposed that will lead to the notation of direct
information (DI). DI measures the part of MI that results from
the direct coupling of residue pairs.
Model derivation. To reach this aim, a global residue distribution
P(A1, . . ., AN) for the joint behavior of all residues shall be
constructed (actually, this task is computationally too expensive;
we restrict it, therefore, to selections of up to 60 positions from
both protein domains). It is not practical to construct this
distribution directly as a histogram from the data since O(21N)
samples are required. Direct estimates of joint frequencies from
our M � 2,546 examples are possible only up to position pairs.
Consistency of the statistical model P(A1, . . ., AN) to data is
therefore restricted to coinciding marginal distributions up to the
2-site level,

fi�Ai� � Pi�Ai� [5]

� �
�Ak�k�i	

P�A1, · · · , AN�

fij�Ai, Aj� � Pij�Ai, Aj�

� �
�Ak�k�i, j	

P�A1, · · · , AN�.
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Besides this condition, the minimally constrained model P will be
reconstructed. The latter is given by the maximum entropy
principle (1–3), i.e., we maximize the entropy

S � � �
�Ai	

P�A1, · · · , AN�ln P�A1, · · · , AN� [6]

under the constraint that all of Eqs. 5 is satisfied. Introduction
of Lagrange multipliers for constraints leads to the form

P�A1, · · · , AN� �
1
Z�

i
j

exp� � eij�Ai, Aj�	�
i

exp�hi�Ai�	

[7]

which includes both purely local terms hi(Ai) and 2-site couplings
eij(Ai, Aj). The latter will finally serve to estimated the strength
of direct coupling of residue positions i and j. The partition
function

Z � �
�Ai	

�
i
j

exp� � eij�Ai, Aj�	�
i

exp�hi�Ai�	 [8]

guarantees correct normalization of Eq. 7. Note that in statistical
physics this model is known as a disordered Q-state Potts model.
It can be described equivalently by the Hamiltonian

H�A1, · · · , AN� � �
i
j

eij�Ai, Aj� � �
i

hi�Ai� [9]

with pair-interaction energies eij(Ai, Aj) and local fields hi(Ai).
The global probability distribution P is given by the Boltzmann–
Gibbs distribution (temperature is set to unity without loss of
generality)

P�A1, · · · , AN� �
1
Z

exp� � H�A1, · · · ,AN�	 . [10]

Gauge fixing. Note that the conditions [5] are not independent: they
are coupled by the consistency constraints [2] and by normalization
of all Pi and Pij. This is reflected by the possibility of changing
parameters of the Hamiltonian in Eq. 9 without changing the value
of H; contributions can be shifted between local fields and inter-
action energies (gauge invariance). The number of parameters in
Eq. 9 is (2

N)q2 � Nq, but the number of free parameters can be
determined to be only (2

N)(q � 1)2 � N(q � 1). To have a reasonable
and reproducible inference result, one has to get rid of this
degeneracy. Since the ultimate goal is estimating direct interaction
strengths, it seems reasonable to put as much as possible of the
Hamiltonian into local fields, and as few as possible into interaction
energies. This intuitive idea can be formalized by asking to mini-
mize the square norm �Ai, Aj

[eij(Ai, Aj)]2 of all interaction terms
under the condition of constant value of H. This task can readily be
fulfilled by the gauge-fixing conditions

�
A

eij�Ai, A� � �
A

eij�A, Aj� � 0 [11]

for all i, j, Ai, Aj. Furthermore, the invariance of model P with
respect to additive constants in H allows to set

�
A

hi�A� � 0 [12]

for all i. These fixations reduce the number of free parameters
in the model to the number of independent conditions in Eqs. 5.
We therefore expect that under this choice the inference task of
P has a uniquely determined solution.

Note that this gauge fixing reproduces the Ising model Ham-
iltonian for Q � 2. For Q � 3 and interactions invariant w.r.t.
permutations of the Q Potts values, the gauge-fixing condition
leads to a vector representation of Potts spins in Q � 1
dimensions.

Model Inference by Gradient Descent. Model parameters can be
estimated by iterating the following 2-step procedure:

1. For a given Hamiltonian, marginal distributions for single
positions and position pairs have to be calculated.

2. By using gradient descent, parameters in the Hamiltonian are
updated according to the difference of the estimated mar-
ginals and the frequencies of amino acid occurrences calcu-
lated from data.

A reasonable starting point for this procedure seems to be to set
the interaction terms initially to zero, eij

(0) (Ai, Aj) � 0, and the
fields to get the correct single-site marginals, hi

(0) (Ai) � ci � ln fi(Ai)
with ci chosen according to the gauge condition [12]. Steps 1 and 2
are iterated until the difference between the model and the
data-given frequency counts reaches some predefined precision.

Assuming that step 1 can be obtained (how to do this is the
major concern in Message Passing), we have to define a correct
update scheme for the model parameters. We choose


eij�Ai, Aj� � ��fij�Ai, Aj� � Pij�Ai, Aj�

�
fi�Ai� � fj�Aj� � Pi�Ai� � Pj�Aj�

Q � [13]


hi�Ai� � ��fi�Ai� � Pi�Ai��

with step size �. This choice preserves the gauge conditions [11,
12].

A Bayesian Perspective. Why should Eqs. 13 converge to a unique
solution? The answer can be given via a Bayesian approach.
Given a model, i.e., given the interactions eij(Ai, Aj) and the local
fields hi(Ai), and assuming statistical independence of the data
points, the probability of the data set D � (Ai

a) is given as

P�D��eij�Ai, Aj�,hi�Ai�	�

� �
a�1

M �1
Z

exp� � �
i
j

e ij�Ai
a, Aj

a� � �
i

h i�Ai
a�� � . [14]

This quantity is a convex function of the model parameters, so
the probability of obtaining a dataset can be maximized by using
simple gradient descent. Eqs. 6 follow immediately from the
variation of the log-likelihood ln P(D � {eij(Ai, Aj), hi(Ai)}) with
respect to eij(Ai, Aj) and hi(Ai), where the gauge conditions 11 and
12 are imposed via Lagrange multipliers (which can be elimi-
nated analytically).

Message Passing. Step 1 of the above iterative procedure is,
however, computationally hard. The direct calculation of the
marginal distributions of model P(A1, . . ., AN) requires the
summation over all but 1 resp. 2 amino acids; the algorithmic
complexity is of order O(21N�1). System sizes would be restricted
to 7–8 aa at most, and global inference would be hard to obtain.

A popular alternative is random sampling from P(A1, . . ., AN)
by Monte Carlo Markov chains (MCMC). For a 21-states model,
it is to be expected that fluctuations remain large even for long
sampling times, and convergence can again be guaranteed only
after exponential times. In this work, it is therefore proposed to
use message passing (4, 5) as an approximate tool. Since message
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passing is based on the solution of deterministic equations, it will
(if converging to a single solution) provide a unique solution for
P. The approximate character of message passing is not well-
controlled, but we expect deviations not to exceed those which
come from imperfect sampling of the space of all possible amino
acid configurations by (evolutionary related) biological input
data.

For the model inference both single-site and 2-site marginals
are needed. The first can be calculated by using message passing
in the form of standard belief propagation (BP). To calculate
2-point distributions, we apply a generalization of BP recently
called susceptibility propagation by Mézard and Mora (6).
Belief propagation and single-residue quantities. The marginals for
single-residue positions can be evaluated by using standard BP.
In this algorithm, messages Pi3j(Ai) (beliefs) are self-consistently
exchanged between sites. BP equations for model 7 read

Pi3j�Ai� 	 ehi�Ai� �
k�i, j

��
Ak

e�eki�Ak, Ai�Pk3i�Ak��. [15]

The message sent from i to j thus results from the local field in
i and all messages sent from other positions k � i, j to i. The
proportionality in Eq. 15 signals that messages are normalized.
The message Pi3j(Ai) can be understood as the marginal amino
acid distribution in position i in a system, where position j has
been removed. The method is therefore known under the name
cavity method in the statistical physics of disordered systems.

BP equations can be solved iteratively by first initializing all
messages arbitrarily, and then using Eq. 15 for updates. Our
experience shows that random sequential updates are most
efficient. Iteration has to be repeated until no message is
updated by more than a predefined precision value, here 10�5

was chosen. Having calculated all messages, we can estimate the
true marginal by including all messages sent to a residue,

Pi�Ai� 	 ehi�Ai��
k�i
��

Ak

e�eki�Ak, Ai�Pk3i�Ak��. [16]

In this approach, we assume all hi(Ai) to be known and determine
their conjugate quantities Pi(Ai). In principle, our inference task
is defined in an inverse way. We know from biological data the
values that the marginal distributions will take at the end,
Pi(Ai) � fi(Ai), and we want to infer the value of the fields. Eqs.
15, 16 allow us to explicitly achieve this inversion by eliminating
the message sent from j to i in [16]. We write

Pi3j�Ai� 	
fi�Ai��Aj e�eij�Ai, Aj�Pj3i�Aj�

[17]

and determine fields after convergence as

ehi�Ai� 	
fi�Ai��j�i�Aj e�eij�Ai, Aj�Pj3i�Aj�

[18]

The proportionality constant in the last equation can be fixed by
using the gauge condition [12]. This inversion guarantees that the
single-residue marginals as estimated by BP always are identical
to those given by protein data; therefore, the gradient descent
update for fields becomes obsolete.

Note that in Eq. 17 the message update factorizes over the
links. The message sent from site i to j depends only on the
marginal in i, the interaction eij(Ai, Aj) between the 2 sites, and
the message sent from j to i. It can be understood as the exact
message-passing approach for a hypothetical system where i and
j together with their link are isolated from the full system, and
the correct single site marginals are imposed on the 2 sites.

This trick largely improves the efficiency of inference by
message passing. Potts models for Q � 3 tend to show first-order
phase transitions, small changes in parameters may lead to major
changes of the BP solution toward new (metastable) states. Such
transitions can be avoided by fixing the marginal distribution
instead of the local fields.
Susceptibility propagation and residue-pair distributions. If the under-
lying graphical structure would be a tree (i.e., a loop-free graph),
BP would give exact results for single-site marginals. The latter
could be easily extended to 2-site functions since there would be
only 1 connecting path between any 2 variables i and j. In our
situation, the model is, however, a priori completely connected.
We do not know which couplings are relevant, so we have to start
with a fully connected system. (In fact, the system will stay fully
connected but some links will become weak. It would be
interesting to design a dilution strategy that allows us to system-
atically delete links without losing too much in fitting precision.)
Correlations between 2 sites can thus be induced by a large
number of different paths. The crucial idea of Mézard and Mora
(6) to resolve this problem consists in the application of the
fluctuation dissipation theorem,

	Pi�Ai�

	hj�Aj�
� Pij�Ai, Aj� � Pi�Ai�Pj�Aj�, [19]

i.e., the response of the residue statistics in site i to a change in
the local field in site j equals the connected part of the 2-point
distribution. Now it is sufficient to derive Eqs. 15, 16 with respect
to fields in arbitrary positions to get self-consistent equations
called susceptibility propagation. Introducing messages

Mi3j;k�Ai, Ak� �
	Pi3j�Ai�

	hk�Ak�
[20]

we can write

Mi3j;k�Ai, Ak� � Pi3j�Ai����i,k���Ai, Ak�

� �
l�i, j

�Al
e�eli�Al, Ai�Ml3i;k�Al, Ak��Al

e�eli�Al, Ai�Pl3i�Al�
� ci3j;k�Ak��.

[21]

The quantity ci3j;k(Ak) results from the derivative of the nor-
malization in Eq. 16 and is chosen such that

�
Ai

Mi3j;k�Ai, Ak� � 0 [22]

for all i, j, k and all Ak. This condition follows easily from the fact
that �Ai

Pi3j(Ai) ' 1, so its derivative with respect to hk(Ak)
vanishes identically. In complete analogy we derive

	Pi�Ai�

	hj�Aj�

� Pi�Ai����i, j���Ai, Aj� � �l�i

�Al
e�eli�Al, Ai�Ml3i, j�Al, Aj��Al

e�eli�Al, Ai�Pl3i�Al�
� cij�Aj��.

[23]

Note that the calculation of the 2-site distribution is much more
time consuming then its single-site counter part. In particular,
the number of messages goes up to O(N3Q2), and an efficient
implementation of the above equations requires O(N4Q2) ele-
mentary steps for a global system update. This time complexity
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is currently the bottleneck of our approach. By restricting the
inference to the 60-residue positions involved in the highest MI
values (for the SK/RR dataset we include the first 140 MIs), the
task can be completed on a single CPU of Dell dual quad-core
2.33 GHz Xeon processor in 4–5 days. The full problem includ-
ing all 212 residues present in the dataset would require several
years of running time and therefore remains infeasible for global
inference.

These equations complete the task of estimating single- and
2-site distributions from a general model with Q states variables
and pair interactions. It can be used in the first of the 2 steps of
Model inference by gradient descent to complete the task of
inferring coupling constants.

Coupling Strength and Direct Information. The main motivation to
infer a global statistical model was to divide pairs of high MI into
2 classes, the first one being characterized by a strong direct
coupling, the second characterized by its absence. To maintain
consistency it seems logical to estimate the contribution of the
direct link to the mutual information, a quantity called here
direct information (DI). To achieve this aim, we define 2-site
distributions

Pij
�dir��Ai, Aj� �

Pi3j�Ai�e�eij�Ai, Aj�Pj3i�Aj��A1, A2
Pi3j�A1�e�eij�A1, A2�Pj3i�A2�

.

[24]

This distribution describes 2 variables that are uniquely coupled
by the direct link (i, j) of interaction eij(Ai, Aj), but that have the
correct marginal distributions fi and fj. No contributions coming
from indirect paths connecting i and j via intermediate sites exist
in this expression. Remember that, due to the factorization of
Eq. 17 over the links, the direct pair distribution Pij

(dir) (Ai, Aj) can
be calculated separately for each link. It allows measurement of
the DI as

DIij � �
Ai, Aj

Pij
�dir��Ai, Aj� ln

Pij
�dir��Ai, Aj�

f i�Ai�f j�Aj�
. [25]

Compared with the mutual information Mij(Ai, Aj) this quantity
measures only the contribution introduced by the direct link (i,

j) to the correlations between the corresponding amino acids, so
it is to be expected to be strictly smaller than Mij(Ai, Aj). We use
this quantity as a measure for the direct coupling strength. Other
measures, e.g., the norm 
eij
2 � �Ai

, Aj
[eij(Ai, Aj)]2, can be

introduced, but are found to contain essentially the same infor-
mation. Even if some pairs change relative order in ranking
according to these different measures, the distinction in weak
and strong interactions given in the main part of the article
remain invariant. Furthermore, DI is invariant under different
gauges of Hamiltonian H, whereas other measures might depend
on the selected gauge.

Algorithmic Implementation. The above ideas are summarized in a
description of the step-by-step implementation of the method.

1. Starting from the concatenated protein sequences of mated
SK/RR pairs, for all residue positions resp. position pairs
marginal counts fi(Ai) resp. fij(Ai, Aj) according to Eqs. 1 are
determined.

2. The mutual informations, MIij, are calculated by using Eqs. 3
and 4; pairs are ordered according to MI values.

3. A MI cutoff is determined such that a given number of residue
positions is contained in the network of supercutoff pairings
(in our case, 60 positions). All pairs of these positions are
considered during inference, including pairs inside the pro-
teins and pairs of low MI. The statistical model is initialized
via eij

(0) (Ai, Aj) � 0, hi
(0) (Ai) � ci � ln fi(Ai).

4. BP Eq. 17 is solved iteratively for messages Pi3j(Ai). A
random sequential update is used.

5. Eq. 21 is solved iteratively, using the previous solution of the
BP equations. The solution is used to determine 2-site
distributions by using Eqs. 23.

6. If the 2-site distributions Pij differ more than the desired
precision from the data distributions fij, couplings are updated
following the first of Eqs. 13, and the previous 2 steps (belief
and susceptibility propagation) are used to determine the
updated 2-site distributions.

7. Once the desired precision is reached, Eqs. 24 and 25 are used
to determine DI for all considered residue pairs. They are
used for ranking of the direct interactions of interprotein
pairs.
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Fig. S1. The distribution of mutual information values MI reveals a threshold value MI(t) for significant residue correlation. The sample size corrected mutual
information values MI for the set of �10,000 histidine kinase/response regulator residue pairings were plotted against their number of occurrence N(MI). For
MI 
 MI(t) � 0.26 (dashed line), the distribution is consistent with an exponential background over 2 decades (solid line). Deviation above the background begins
in the region around MI(t).

Weigt et al. www.pnas.org/cgi/content/short/0805923106 5 of 12

http://www.pnas.org/cgi/content/short/0805923106


Fig. S2. MI and DI identify a network of coupled residues. Displayed is the network of coupled residue between SK (rectangular nodes) and RR (elliptic nodes).
Elements of group I (displayed in red) are coupled via links showing both high MI and DI (red links), the links in group II (green links) have high MI but low DI.
The high MI of the latter group results from the high connectivity among its group members. The links close to threshold (blue zone in Fig. 2A) are depicted in
blue; they are seen to further connect residues in group I. The numbering refers to 2 specific proteins used in the further discussion, HK853 from Thermotoga
maritima for SK and Spo0F from Bacillus subtilis for RR.
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Fig. S3. The inferred DI values are robustly reproduced on disjoint data subsets. DI values as inferred by using only the first half (blue �) or the second half
(red �) of the mated sequences are plotted versus DI values inferred from all data. The set of top-ranking residue pairs remains almost unchanged. A small but
systematic change from smaller to larger datasets can be observed. Small DI values become smaller, high DI values larger by extending the dataset. Therefore,
larger datasets allow for a better separation of relevant DI values from the background.

Weigt et al. www.pnas.org/cgi/content/short/0805923106 7 of 12

http://www.pnas.org/cgi/content/short/0805923106


0 10 20 30 40 50
rank without correction

0

10

20

30

40

50

60

70

80
ra

nk
 w

ith
 c

or
re

ct
io

n

0 900
0

900

Fig. S4. DI ranking is robust with respect to sampling corrections. DI rank without and with reweighting to correct for sampling effects. For each interacting

SK/RR pair Aa�, the number na of sequences having �80% sequence identity with Aa� is determined, and Aa� is assigned a weight 1/(na � 1) in frequency counts.
Weights range from 1/14 to 1, the effective sample number calculated as the sum of all weights goes down to 1,792. DI is determined for reweighted frequency
counts, and compared with DI without reweighting. The main figure shows the highest 50 ranks. In between the 10 highest-ranking position pairs, one finds
10 common pairs; in between the first 20 pairs, 17; in between the first 30 ranks, 25 common position pairs. (Inset) Full DI rankings; their Pearson correlation
coefficient is 0.98.
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Fig. S5. Direct Information (DI) identifies contact residues in the Spo0B/Spo0F cocrystal structure. (A) All individual residue positions in HisKA and RR domain
that show at least 1 pairing with MI � MI(t) were mapped on the Spo0B/Spo0F structure, except for HisKA 
2-helix positions (291, 294, and 298), which do not
map well to the Spo0B structure. Phosphotransfer residues are in yellow. (B) The distances were measured for all possible combination of these residues. Distances
up to 6 Å are highlighted in black, up to 12 Å are in gray, and distances �12 Å are in white. Residue pairings with DI � 0.058 and MI � 0.26 are framed in red
(group I), with DI 
 0.058 and MI � 0.26 are framed green (group II), and residues in the blue zone of Fig. 2A are framed in blue.
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Fig. S6. Direct information detects inter- and intramonomer contact pairings. Positions of the 15 RR/RR residue pairings with the highest DI were mapped onto
the ArcA structure, and the minimal distances (d) between these pairs were determined in Ångströms. Figures are depicted according to the DI ranking as
indicated. High DI residue pairings, which are also within 2 residues in sequence space were omitted from this analysis because of obvious closeness of such pairs
(rankings 9, 10, and 14). Two pairings (rankings 8 and 13) show a distance of � 5Å. These, however, are in close proximity in Escherichia coli PhoP and Streptococcus
pneumoniae MicA, indicating that not every contact is made in every RR structure.
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Fig. S7. Direct information (DI) is inversely correlated with residue distance of pairs in the ArcA/PhoP/MicA dimer structures. (A) Average minimal distances
for all possible RR/RR parings in Ångströms derived from the ArcA, PhoP, and MicA dimer structures (PDB ID codes 1XHE, 2PKX, and 1NXW) were plotted against
direct information DI (red diamonds). (B) Specificity vs. rank percentile for predicting contact pairs via DI (red curve) and MI (blue curve). Specificity is defined
as the fraction of pairings at the given percentile that are within 6 Å in the various RR structures. DI identifies 23, MI only 8 contact pairs before including the
first false positive. This simple definition counts group C pairings including positions on the 
1-helix as false positives, even if they carry biologically sensible
information, compare the caption for Table S1. In the green (DI) and orange curves (MI), positions 14, 18, 21, 22, and 25 of the 
1-helix were therefore excluded
from the dataset, and ranking was thus restricted to pairings showing correlations because of contacts inside the RR monomer or the RR/RR dimer alone. DI
identifies 34 contact pairs at specificity 1.
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Other Supporting Information Files

Table S1

Fig. S8. Correlation matrices reveal dominant pairings for the 4 different dimer contacts. The residue-pair interaction matrices are shown for the 4
intermonomer pairings depicted in Fig. 3. The x axis depicts the possible residues in the first position, the y axis in the second position. The direct interaction
strength eij(Ai, Aj) is depicted on a scale from dark red for positively coupled pairs over white to dark blue for strongly negative couplings (see scale). Thus, red
entries indicate the favored amino acid combinations in positions i and j, whereas the blue entries indicate the avoided combinations. The actual pairings found
at those positions in ArcA, PhoP, and MicA structural examples are framed in green, yellow, and gray, respectively (see also Fig. 3 in the main article). Of note,
the 89:109 salt bridge conserved between the 3 structural examples is only one of several common pairings observed at this position. Also, whereas most of the
pairings correspond to the red entries, not all 4 contacts are made in all 3 structures. For instance, the Q:S combination observed for pairing 94:115 (ArcA
numbering) in PhoP is too distant to support the dimer structure (Fig. 3, main article) and consequently is rarely found at these positions as evident from the
very light pink color in the correlation blot.
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